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Abstract

An algorithm to achieve maximal spread and almost perfectly distributed Pareto fronts is presented. The MaxiMin
algorithm add points to the archive of selected individuals one by one, each point which is added maximizes the
distance from the current selected points. This method is independent of the evolutionary operators used to perform
the search. This work explains how to combine the MaxiMin selection with state of the art multi-objective algorithms,
such as NSGA-II, SPEA2, and DEMO. Experiments were ran with and without MaxiMin for comparison purposes.
ε-MOEA is used as reference. Performance metrics and graphical results are shown for comparison.

1 Introduction

Multi-objective optimization algorithms (MOEAs) find optimum solutions in a space shared by several conflicting
functions. The optimality measure used by most approaches is the Pareto optimality criterion and the set of vectors
in agreement with it is the Pareto set, or non-dominated set. The hyper-surface shaped by this set, when projected to
function space, is called the Pareto front. Usually, the Pareto front has an infinite number of points. Computationally,
it is impossible to work with such a large number of points. Therefore, MOEAs usually work with a bounded archive
to preserve the best solutions found. In order to accomplish the desired features, two goals have been established for
MOEAs [1]:

1. To find a set of solutions as close as possible to the Pareto-optimal front.

2. To find a set of solutions as diverse as possible.

Several mechanisms have been proposed in order to accomplish the second goal. The main idea of these mecha-
nisms involves complementing the optimality criteria with a crowding measure. Some proposals are: the niche count
used by NPGA [2], the hypercube perimeter used by NSGA-II [3], thek−th nearest neighbor based distance in SPEA2
[4], the n-dimensional grid used by PAES in function space [5], the nearest neighbor average proposed in PDE [6], and
theε-dominance used byε-MOEA. The DEMO algorithm [7] uses the same diversity preservation mechanism used
by NSGA-II, but for some problems it reports better diversity metric values. In this context, observe that most of the
mechanism implemented by MOEAs to preserve diversity are independent of the evolutionary search engine. A brief
reminder of the most common and well performed mechanisms is presented in Section 2.

Section 3 presents an improved selection strategy called MaxiMin to select well distributed points on the Pareto
front with no detriment of the convergence capacity. This mechanism was studied before by Solteiro et al. in [8], as
a sorting strategy to preserve diverse solutions. By using spreading metrics, preliminary results about the MaxiMin
capacity were shown in [8]. Discussion about the metrics used by Solteiro et al., and the performance metrics used in
this paper are presented in Section 5.
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Since the MaxiMin does not depend on the search engine, several proposals are presented to insert the MaxiMin
mechanism in some of the most useful and well performed MOEAs, such as NSGA-II, SPEA2 and DEMO. Finally
it is compared to the original implementation of these algorithms by using diversity and convergence performance
metrics. Comparisons with theε-MOEA are also performed. This algorithm was especially designed for achieving
well distributed solutions; thus, this comparison is particularly interesting. The MaxiMin algorithm, however, shows
some dependency to population size. The analysis is presented in Section??, and conclusions are given in Section 7.

2 Overview of diversity mechanism approaches

As noted, diversity is one of the most important issues in multi-objective evolutionary optimization. Since MOEAs
work with a finite population size, solutions which represent the whole optimum space are required. Also, in most
cases, maintaining diverse solutions is a good strategy to improve performance. Diversity helps individuals to escape
from local minima, avoiding premature convergence to a fake optimum set. In addition, the optimum set found by a
MOEA can be used for a non-automated decision maker, who would choose a unique solution. In order to generate
and to preserve diverse solutions, several mechanisms have been proposed. The discussion below briefly reviews
the diversity strategies of the three algorithms that will be enhanced with MaxiMin selection and used later for the
experiments. Theε-MOEA algorithm rests on the concept ofε-dominance to achieve diversity. It is described for
the sake of completeness but it is only used as a reference. However, it is important to mention that diversity control
strategies are part of several algorithms, for instance the Niched Pareto Genetic Algorithm (NPGA), proposed by
Horn et al. [2], the Pareto Archive Evolution Strategy, proposed by Knowles and Corne [5], and the Pareto-frontier
Differential Evolution, proposed by Abbas et al. [6].

2.1 The Elitist Non-Dominated Sorting Genetic Algorithm (NSGA-II)

The NSGA-II [3] uses a Pareto ranking as a partial fitness assignment. Each solution is ranked by the Pareto front
it belongs to. Then, to preserve diverse solutions, a hyper-cube perimeter measure is used to calculate a crowding
distance (this step completes the fitness assignment). There are two steps where the crowding distance is used: first
in the crowded tournament selection, and for truncation of the best solutions when the archive is overfilled. Once the
function evaluation is computed, each solution is ranked with the front it belongs to. Solutions from the same front
are used to assign the crowding distance. First, the solutions with the same rank are sorted by their objective function
values, for each objective function. Then, a crowding distance is computed as follows:

dIm
j

= dIm
j
+

f
Im
j+1

m − f
Im
j−1

m

f max
m − f min

m
(1)

wherem = 1,2...M is the objective function index.Im are sorted indexes by them objective function. A large
distance is assigned to the boundary solutions,dIm

1
= dIm

l
= ∞. For all other solutionsj = 2 to (l −1) , the crowding

distance is calculated as in Equation 1,l is the number of solutions in the current rank. In tournament selection, the
crowding distance is used when candidates do not dominate each other. For the truncation method, the best ranked
individuals are preserved, crowding distance is used only to discriminate individuals with the same rank.

2.2 The Improved Strength Pareto Evolutionary Algorithm (SPEA2)

In this method a fitness assignment is performed by calculating a strength value, which is the sum of how many
individuals each individual dominates [4]. The sum of the strength values of individuals which dominates an individual
x is the fitness value ofx. To preserve diverse solutions, a nearest neighbor distance function is used as crowding
distance, it is calculated as follows:

di =
1

2+σk
j

(2)
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whereσk
j is the distance to thek− th nearest neighbor. This distance is used in tournament selection to determine a

winner when candidates have the same fitness. In the truncation procedure to maintain a fixed size archive, dominated
solutions with the worst crowding values are removed first, if the number of non-dominated individuals is great than
the fixed archive size, individuals with the worst crowding distance are removed too.

2.3 Differential Evolution for Multi-objective Optimization (DEMO)

The algorithm proposed by Robic and Filipic [7], uses the differential evolution crossover operator [9]. It does not
perform any tournament for parent selection, the parents are picked randomly. When a child dominates his father, the
last one is deleted from the archive, otherwise the father is preserved. All children are added to the archive, then a
truncation procedure is applied when there are more non-dominated solutions than those required. Using the crowding
distance (and ranking) from the NSGA-II [3], the DEMO algorithm truncates solutions. Even though the same fitness
and crowding measure are used in NSGA-II, the DEMO algorithm reports a better diversity [7].

2.4 ε-MOEA

This algorithm was proposed by Deb et al. [10]. It uses theε-dominancecriterion presented by Laumans et al. in [11].
Basically, the objective space is split into a grid determined by anε vector given (the number of hyper-boxes is given
by ε). Two evolving populations are used:P that is a usual population randomly initialized andE that is an archive
population with the best solutions found. One offspring is generated from two solutions mated, one fromP and one
from E. The solution fromP is chosen by a tournament selection using usual dominance to determine the winner,
if both competitors are non-dominated, one of them is chosen randomly. The solution fromE is simply randomly
picked. Then, solutions in the archive and the new candidate solution (offspring) are assigned an identification array
B = (B1,B2, ...BM)T , whereM is the number of objective functions. This vector is computed as follows:

B j( f ) =
{ b( f j − fmin)/ε jc, for minimizing f j ,
d( f j − fmin)/ε je, for maximizing f j ,

(3)

UsingB, the candidate solution is compared with each solution in the archiveE. If the candidate dominates any
solution, the last is deleted and the candidate is added to the archive. Otherwise, if any solution has the sameB values
as the candidate solution, it is compared using usual dominance, and the winner is added to the archive. If the candidate
solution and a solution fromE have the sameB values, and are non-dominated in the usual sense, the solution with the
smallest distance toB is the winner. In the case that no solution in the archive has the same values as the candidate,
and the candidate is non-dominated, it is accepted to the archive.

3 The MaxiMin Selection

The algorithm presented in this section is based on a distance measure over selected points. A significant difference
among this approach and some presented before (see [3], [4], [6], [2]), is that MaxiMin works with distances over
the selected individuals, in order to get a good spreading. Other approaches usually calculate a crowding measure
among the archive and the evolving population. These measures consider all the individuals, without considering if
they will be selected or not. These kinds of measures do not ensure a good spread of solutions, because eliminating
clustered or crowded points from the merged population is not to choose the best uniformly distributed points in the
selected individuals. The presented approach adds points one by one, checking that each point which is added keeps
a good spreading in the selected set. As we work with selected points, calculation of distances among all the points
is not necessary, we only need to calculate the distance among selected points and remaining points in the merged
population.

According to pseudo-code in Figure 2, in line 1 the values of the objective functions are normalized between0 and
1, using the maximum and minimum known values of every function.F(S) are the function values of individualsS to
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Figure 1: Graphical explanation for the MaxiMin algorithm.

which the MaxiMin will be applied.

In line 2, extremes of the Pareto front are selected using reference points:[1,0,0, ...,0], [0,1,0, ...,0], ...,[0,0,0, ...,1].
The extreme points are the nearest to each reference point. So, extreme individuals are selected fromS to be inserted
in D. Solteiro et al. proposed in [8] using the maximum or minimum in every objective function. We propose using the
extreme points as are defined before, considering that in some problems there can be many (infinite) minima/maxima
and all of them can be non-dominated individuals. An example of this type of Pareto front is the DTLZ1 problem
proposed by Deb et al. in [12], there is a set of points which are minima for every function. Actually, the minima
for f1 is the line created where the front cuts the planef2− f3. We have a similar case forf2 and f3, minimum is
not unique. Using reference points we can approach a better idea of the front limits and shape, and most of the time
extreme points are unique. There are as many extreme points as objective functions.

In lines 3 to 9, a distance measure attached to each remaining individuals in the setS\D is initialized, calculating
the (minimum) distance from the setS\D to D. This measure is stored ind.

Function in line 10 finds the index with the maximum distance measure, this point is added toD in line 11.
Lines 12 to 24 are used to calculate distances from setS\D to setD, and adds the point with the maximum distance

measure toD. A point is added each loop, and the distance measures are updated if necessary.The remaining points
are added one by one until the whole fixed size archive is filled.

A graphical explanation of the algorithm for three objectives is shown in Figure 1. The extreme points are E1, E2,
and E3. The lines trace distances among the selected points (initially the extreme points) and the remaining points.
The dashed lines are distances which are taken as a measure for the remaining points (minD(Pi)). Then, the point with
the maximum measurement isP3 which will be the next selected point.

4 Enhancing MOEAs with the MaxiMin Selection

The MaxiMin algorithm can be used with any fitness assignment, and any search engine. One must keep in mind
that the goal of MaxiMin is to select uniformly spaced vectors to populate the next generation. In the following we
describe three examples in which NSGA-II, SPEA2, and DEMO are modified to work with the MaxiMin selection.
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1 normalize( F(S) );
2 Selectextreme( F(S) ,D)
3 For i ∈ S\D
4 di=M
5 For l ∈ D

6 if
(

di >
√

∑M
k ( fk,i − fk,l )2

)

7 di =
√

∑M
k ( fk,i − fk,l )2

8 EndFor
9 EndFor
10 m=find max(d)
11 D = D ∪ xm

12 While |D|< archive size
13 dmax= 0
14 For i ∈ S\D

15 if
(

di >
√

∑M
k ( fk,i − fk,m)2

)

16 di =
√

∑M
k ( fk,i − fk,m)2

17 if (di ≥ dmax)
18 dmax= di

19 mtemp= i
20 EndIf
21 EndFor
22 m= mtemp

23 D= D ∪ xm

24 End While

Figure 2: Pseudo-code for the MaxiMin algorithm.

4.1 Enhancing the NSGA-II with the MaxiMin selection.

Suppose we haveµ parents,λ children, andα individuals in the external archive with the best individuals [3]. Parents
are selected from the external archive by using a binary tournament. Children are generated using SBX crossover
and polynomial mutation. Children are evaluated and merged with the parents in a mixed population of sizeµ+ λ.
In order to select the bestα individuals, the MaxiMin algorithm is applied for this purpose. The NSGA-II ranks the
population into fronts, for every front it calculates a crowding distance. Thus, we applied the MaxiMin algorithm
to each front. Since the MaxiMin algorithm selects individuals one by one, we can attach a MaxiMin-rank to each
individual, according to the order in which each individual is added to the selected set. Then, we assign1/rankMaxiMin

as the crowding distance used to compare solutions in the same front. The MaxiMin is used again to give a new
crowding distance to the selected set in the external archive. This crowding distance will be used for the binary
tournament, when Pareto dominance is not enough to determine a winner.

4.2 Enhancing the SPEA2 with the MaxiMin selection.

In our implementation the SPEA2 algorithm uses the same crossover and mutation as the NSGA-II. Fitness assignment
is described in 2 and for details in [4]. In order to apply the MaxiMin, we proceed as follows: after evaluation,
individuals are sorted by fitness. We choose the firstα individuals (α is the archive size), and individuals with the
same fitness value as the individual in theα position. Among individuals with the same fitness asα, the MaxiMin
algorithm is applied to select the needed individuals to fill an external archive of sizeα. MaxiMin is used again (as in
NSGA-II) to give a new crowding distance to selected individuals (possible parents).
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4.3 Enhancing DEMO with the MaxiMin selection.

The differential evolution for multi-objective optimization (DEMO) uses a special crossover to generate children [7].
A first selection step is performed by comparing offspring only with their own father. If a child dominates his parent
the last is removed from the external archive. A second selection is performed at the end of the children’s generation,
when parents and children are merged in one pool. Members of the pool are ranked and selection proceeds as in
NSGA-II with Maximin.

5 Performance metrics

Solteiro et al. in [8] use the spacing index (SP), the distance-based distribution index (∆′), and the minimal distance
graph (MDG), in order to show the performance of the MaxiMin selection. These indices have some disadvantages.
The SP index does not measure the coverage of solutions on the Pareto front, it only measures uniformity in solution
space. Therefore, solutions having a very good spacing but clustered at one end of the front get very high marks. The
∆′ index has the same problem, it does not weigh in any form the coverage of solutions. In addition to the mentioned
disadvantages, these two measures (SP and∆′) are defined only for two dimensional problems. The MDG has the
same absence of a coverage factor. In Solteiro’s work [8] also no convergence metric is presented. Even though we
are improving diversity of solutions, a convergence metric is necessary in order to analyze how diversity improvement
impacts on convergence. Metrics must show that convergence and coverage-spacing behavior can be successfully
achieved.

• Convergence Metric: Generational distance

This metric finds the average distance of solutionsQ from the reference frontP∗, as follows (Veldhuizen, 1999,
see [1]):

GD =

(
∑|Q|

i=1dp
i

)1/p

|Q| (4)

The metric was calculated forp= 2. The parameterdi is the Euclidean distance (in the objective space) between
the solutioni ∈ Q and the nearest member inP∗:

di =
|P∗|
min
k=1

(√
M

∑
m=1

( f (i)
m − f ∗(k)m )2

)
, (5)

where f ∗(k)m are the objective function values, of thek− th member inP∗. In order to have a less subjective
measure, objective function values were normalized using the extreme values in the reference fronts.

• Diversity Metric: Spread

The diversity metric suggested by Deb et al. (2000.a, see [1]) is in Equation 6. Wheredi can be any distance
measure, in this case the Euclidean distance in the normalized objective space, between thei−th solution and its
consecutive neighbor for two-objective problems. For three objectivesdi is the distance to the nearest neighbor.
The extreme points are selected as is explained in Section 3. Thus,|Q| − 1 distances can be computed for
two-objective problems, and|Q| for three objective problems.

∆ =
∑M

m=1de
m+∑|Q|−1

i=1 |di − d̄|
∑M

m=1de
m+(|Q|−1)d̄

(6)
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• Normalized Diversity

In order to improve the comparison of the results, the column “ND” (for normalized diversity) is computed for
all tables (each problem is reported in one table). Therefore, every algorithm reported in a table gets aND value
which indicates its performance rank. The algorithm with the best diversity value gets a0; the worst one gets a
1. Normalized diversity is computed through Equation 7.

ND =
∆−∆min

∆max−∆min
(7)

Where∆ is the mean of the diversity metric value, computed according Equation 6.∆max and ∆min are the
maximum and minimum means.

• Coverage Metric: Maximum Spread

The metric presented in this section is based in the maximum spread metric defined by Zitzler [1]. This metric
measures the length of the diagonal of a hyperbox formed by the extreme function values observed in the non-
dominated set. The normalized version of the maximum spread metric is defined by Equation 8.

D =

√√√√ M

∑
m=1

(
max|Q|i=1 f i

m−min|Q|i=1 f i
m

Fmax
m −Fmin

m

)2

(8)

A disadvantage of the maximum spread metric is that it does not show when the front is covered in all the
functions, some function values can be larger than the reference values, and some other can be smaller, and
in average the resulting metric could not represent the real coverage. Thus, a metric which measures the real
coverage of the front is presented in Equation 9, the best metric value is0 when the reference front and the front
we are measuring have the same limits, otherwise it is greater than0.

D =

√√√√ M

∑
m=1

(
1− max|Q|i=1 f i

m−min|Q|i=1 f i
m

Fmax
m −Fmin

m

)2

(9)

6 Experiments

We present our comparative study of different evolutionary algorithms. The ZDT and DTLZ test have well known
Pareto fronts; also, performance metrics are well known and widely used. A True Front of 500 uniformly dis-
tributed points was used to compute both performance metrics of every algorithm on the ZDT test suite (available
at http://dis.ijs.si/tea/demo.htm). For DTLZ test suite, we use a set of about 10,000 points as Reference Front. Ver-
sions of NSGA-II, SPEA2, and DEMO, enhanced with MaxiMin and standard versions were used to solve the test
suite problems. For all cases the number of function evaluations were 30,000.

6.1 ZDT test problems

The two-objective set of problems ZDT is given in Table 1. ZDT5 is discrete so it was not solved. Diversity and
convergence metrics are calculated for the four algorithms with and without MaxiMin selection. Populations sizes of
66, 100, and 130 were used for comparison of this set of problems. The different parameters used by the algorithms
are described next:
NSGA-II . Mutation probability was1/n, wheren is the number of variables, and crossover probability was 0.9 for all
cases. Theη parameters used for the SBX crossover and polynomial mutation were 15 and 20 respectively. For the
MaxiMin algorithm when it is inserted in NSGA-II, mutation probability was set in1/(2n) for all populations, and
probability crossover of 0.9 for all cases.
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ZDT1

Decision space x ∈ [0,1]30

Objective functions f1(x) = x1

f2(x) = g(x)(1−
√

x1/g(x))
g(x) = 1+ 9

n−1 ∑n
i=2 xi

Optimal solutions 0 ≤ x∗i ≤ 1 and x∗i = 0 f or i = 2, ...,30

ZDT2

Decision space x ∈ [0,1]30

Objective functions f1(x) = x1

f2(x) = g(x)(1− (x1/g(x))2)
g(x) = 1+ 9

n−1 ∑n
i=2 xi

Optimal solutions 0 ≤ x∗i ≤ 1 and x∗i = 0 f or i = 2, ...,30

ZDT3

Decision space x ∈ [0,1]30

Objective functions f1(x) = x1

f2(x) = g(x)(1−x1/g(x)− x1
g(x) sin(10πx1)

g(x) = 1+ 9
n−1 ∑n

i=2 xi

Optimal solutions 0 ≤ x∗i ≤ 1 and x∗i = 0 f or i = 2, ...,30

ZDT4

Decision space x ∈ [0,1]× [−5,5]9
Objective functions f1(x) = x1

f2(x) = g(x)(1− (x1/g(x))2)
g(x) = 1+10(n−1)∑n

i=2(x
2
i −10cos(4πxi))

Optimal solutions 0 ≤ x∗i ≤ 1 and x∗i = 0 f or i = 2, ...,30

ZDT6

Decision space x ∈ [0,1]10

Objective functions f1(x) = 1−e−4x1sin(6πx1)6

f2(x) = g(x)(1− ( f1(x)/g(x))2)
g(x) = 1+ 9

n−1 ∑n
i=2 xi

Optimal solutions 0 ≤ x∗i ≤ 1 and x∗i = 0 f or i = 2, ...,30

Table 1: The ZDT test problems

SPEA2. With and without MaxiMin, mutation probability was set in1/(2n) for all cases. Individual crossover
probability was 1.0, and variable crossover probability was 0.9
DEMO . For all cases when using DEMO, probability crossover was 0.3
ε-MOEA . Mutation probability was1/n for all cases and crossover probability of 1.0. Theε values from ZDT1 to
ZDT6 respectively for both objective functions.are

• for population size of 66:
[0.01137,0.01145,0.004005,0.01137,0.009],

• when using a population size of 100:
[0.0075,0.0076,0.00261,0.0074,0.00595],

• and for a population size of 130:
[0.0057,0.0058,0.002,0.0057,0.0046]

The ε values were chosen such that sizes of the final archive were approximately 66, 100, and 130 for comparison
purposes.

The parameters were chosen empirically, trying to obtain the best performance for each algorithm.

• Comments to ZDT1. All algorithms have convergence value close to zero (reached the True Front), but the
diversity metric makes the difference. As we can see in Table 2, the MaxiMin algorithm notably improves the
diversity of solutions, with no reduction of convergence properties of the algorithms. Pareto fronts are shown in
Figure 3 for comparison purposes.

• Comments on ZDT2. Once again the MaxiMin version of each algorithm improves diversity of solutions.
Results are shown in Table 3, and a sample view of the Pareto fronts are shown in Figure 4.
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Algorithm Pop Diversity ND Convergence Max. Spread
Size Mean (StdDev) Mean (StdDev) Mean (StdDev)

NSGA-II 66 3.53E-01 ( 3.16E-02 ) 1.00 4.08E-04 ( 1.16E-04 ) 0.002 ( 6.67E-03 )
NSGA-II (MaxiMin) 66 3.92E-02 ( 2.06E-02 ) 0.01 3.85E-04 ( 9.68E-05 ) 0.002 ( 6.90E-03 )

SPEA2 66 3.29E-01 ( 2.91E-02 ) 0.92 3.70E-04 ( 7.08E-05 ) 0.016 ( 8.45E-03 )
SPEA2 (MaxiMin) 66 3.76E-02 ( 7.33E-03 ) 0.00 3.67E-04 ( 1.61E-05 ) 0.000 ( 2.15E-04 )

DEMO 66 3.17E-01 ( 2.66E-02 ) 0.89 2.61E-04 ( 5.66E-05 ) 0.000 ( 1.85E-09 )
DEMO (MaxiMin) 66 3.86E-02 ( 3.86E-03 ) 0.00 3.37E-04 ( 3.75E-05 ) 0.000 ( 1.00E-09 )

ε-MOEA 66 3.41E-01 ( 7.84E-03 ) 0.96 1.45E-04 ( 1.63E-05 ) 0.079 ( 1.15E-03 )
NSGA-II 100 3.46E-01 ( 2.79E-02 ) 0.98 2.76E-04 ( 3.49E-05 ) 0.000 ( 2.43E-04 )

NSGA-II (MaxiMin) 100 3.10E-01 ( 4.43E-03 ) 0.86 2.82E-04 ( 1.23E-05 ) 0.001 ( 5.13E-04 )
SPEA2 100 3.21E-01 ( 2.10E-02 ) 0.90 2.86E-04 ( 3.29E-05 ) 0.010 ( 4.65E-03 )

SPEA2 (MaxiMin) 100 3.08E-01 ( 5.26E-03 ) 0.86 2.82E-04 ( 1.39E-05 ) 0.001 ( 1.18E-03 )
DEMO 100 3.18E-01 ( 2.59E-02 ) 0.89 2.29E-04 ( 2.68E-05 ) 0.000 ( 4.37E-07 )

DEMO (MaxiMin) 100 3.09E-01 ( 4.05E-03 ) 0.86 2.41E-04 ( 3.55E-05 ) 0.000 ( 1.28E-07 )
ε-MOEA 100 3.50E-01 ( 9.47E-03 ) 0.99 1.15E-04 ( 8.20E-06 ) 0.061 ( 1.08E-03 )
NSGA-II 130 3.47E-01 ( 2.64E-02 ) 0.98 2.40E-04 ( 2.52E-05 ) 0.000 ( 2.36E-04 )

NSGA-II (MaxiMin) 130 6.19E-02 ( 1.75E-02 ) 0.08 2.40E-04 ( 5.69E-06 ) 0.000 ( 3.94E-04 )
SPEA2 130 3.11E-01 ( 2.30E-02 ) 0.87 2.58E-04 ( 2.52E-05 ) 0.006 ( 3.49E-03 )

SPEA2 (MaxiMin) 130 5.95E-02 ( 1.39E-02 ) 0.07 2.40E-04 ( 8.90E-06 ) 0.000 ( 4.64E-04 )
DEMO 130 3.32E-01 ( 2.67E-02 ) 0.93 2.01E-04 ( 2.38E-05 ) 0.000 ( 2.98E-06 )

DEMO (MaxiMin) 130 6.25E-02 ( 9.24E-03 ) 0.08 2.19E-04 ( 1.84E-05 ) 0.000 ( 1.16E-06 )
ε-MOEA 130 3.51E-01 ( 8.51E-03 ) 0.99 1.18E-04 ( 6.31E-06 ) 0.054 ( 2.24E-03 )

Table 2: Diversity and convergence metrics for problem ZDT1

Algorithm Pop Diversity ND Convergence Max. Spread
Size Mean (StdDev) Mean (StdDev) Mean (StdDev)

NSGA-II 66 3.40E-01 ( 3.03E-02 ) 0.98 2.85E-04 ( 8.95E-05 ) 0.000 ( 5.23E-05 )
NSGA-II (MaxiMin) 66 4.11E-02 ( 1.41E-02 ) 0.02 1.36E-04 ( 2.76E-05 ) 0.000 ( 4.50E-04 )

SPEA2 66 3.38E-01 ( 2.93E-02 ) 0.97 2.24E-04 ( 9.37E-05 ) 0.011 ( 5.84E-03 )
SPEA2 (MaxiMin) 66 3.61E-02 ( 3.24E-03 ) 0.00 1.39E-04 ( 2.58E-05 ) 0.000 ( 4.20E-04 )

DEMO 66 3.24E-01 ( 3.20E-02 ) 0.93 1.16E-04 ( 7.66E-06 ) 0.000 ( 6.29E-09 )
DEMO (MaxiMin) 66 3.75E-02 ( 2.42E-03 ) 0.00 1.16E-04 ( 3.88E-06 ) 0.000 ( 1.00E-09 )

ε-MOEA 66 2.54E-01 ( 1.15E-02 ) 0.70 1.45E-04 ( 1.50E-05 ) 0.006 ( 5.78E-04 )
NSGA-II 100 3.47E-01 ( 2.57E-02 ) 1.00 1.59E-04 ( 4.21E-05 ) 0.001 ( 3.70E-03 )

NSGA-II (MaxiMin) 100 3.08E-01 ( 3.91E-03 ) 0.87 1.11E-04 ( 1.82E-05 ) 0.000 ( 1.67E-04 )
SPEA2 100 3.09E-01 ( 2.47E-02 ) 0.88 1.45E-04 ( 3.45E-05 ) 0.008 ( 4.58E-03 )

SPEA2 (MaxiMin) 100 3.09E-01 ( 3.47E-03 ) 0.88 1.04E-04 ( 1.49E-05 ) 0.000 ( 1.71E-04 )
DEMO 100 3.24E-01 ( 2.75E-02 ) 0.93 9.36E-05 ( 3.95E-06 ) 0.000 ( 5.87E-07 )

DEMO (MaxiMin) 100 3.04E-01 ( 3.63E-03 ) 0.86 9.04E-05 ( 3.79E-06 ) 0.000 ( 1.66E-07 )
ε-MOEA 100 2.59E-01 ( 8.73E-03 ) 0.72 1.29E-04 ( 8.46E-06 ) 0.001 ( 3.85E-04 )
NSGA-II 130 3.44E-01 ( 3.01E-02 ) 0.99 1.30E-04 ( 1.33E-05 ) 0.001 ( 4.78E-04 )

NSGA-II (MaxiMin) 130 7.60E-02 ( 1.37E-02 ) 0.13 1.09E-04 ( 8.47E-06 ) 0.001 ( 2.39E-04 )
SPEA2 130 3.25E-01 ( 1.84E-02 ) 0.93 1.75E-04 ( 8.13E-05 ) 0.007 ( 8.00E-03 )

SPEA2 (MaxiMin) 130 7.98E-02 ( 1.63E-02 ) 0.14 1.12E-04 ( 8.43E-06 ) 0.001 ( 3.63E-04 )
DEMO 130 3.22E-01 ( 1.97E-02 ) 0.92 8.27E-05 ( 3.70E-06 ) 0.000 ( 4.14E-06 )

DEMO (MaxiMin) 130 5.15E-02 ( 6.08E-03 ) 0.05 8.30E-05 ( 2.76E-06 ) 0.000 ( 2.04E-06 )
ε-MOEA 130 2.66E-01 ( 9.20E-03 ) 0.74 1.34E-04 ( 1.15E-05 ) 0.002 ( 1.35E-03 )

Table 3: Diversity and convergence metrics for problem ZDT2
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Algorithm Pop Diversity ND Convergence Max. Spread
Size Mean (StdDev) Mean (StdDev) Mean (StdDev)

NSGA-II 66 7.09E-01 ( 1.91E-02 ) 0.28 1.67E-04 ( 2.61E-05 ) 0.014 ( 5.27E-02 )
NSGA-II (MaxiMin) 66 6.62E-01 ( 8.21E-03 ) 0.01 1.14E-04 ( 1.65E-05 ) 0.008 ( 3.79E-02 )

SPEA2 66 7.35E-01 ( 2.06E-02 ) 0.43 2.03E-04 ( 9.00E-05 ) 0.018 ( 3.93E-02 )
SPEA2 (MaxiMin) 66 6.60E-01 ( 7.66E-04 ) 0.00 1.13E-04 ( 7.02E-06 ) 0.000 ( 1.39E-04 )

DEMO 66 6.93E-01 ( 1.38E-02 ) 0.19 1.16E-04 ( 1.25E-05 ) 0.000 ( 1.16E-04 )
DEMO (MaxiMin) 66 6.62E-01 ( 3.27E-03 ) 0.01 1.16E-04 ( 7.52E-06 ) 0.000 ( 9.66E-05 )

ε-MOEA 66 8.09E-01 ( 3.33E-03 ) 0.85 8.85E-05 ( 4.76E-06 ) 0.032 ( 3.66E-02 )
NSGA-II 100 7.41E-01 ( 1.30E-02 ) 0.46 1.19E-04 ( 1.26E-05 ) 0.000 ( 4.55E-04 )

NSGA-II (MaxiMin) 100 7.03E-01 ( 2.61E-03 ) 0.25 9.52E-05 ( 4.56E-06 ) 0.007 ( 3.79E-02 )
SPEA2 100 7.60E-01 ( 1.70E-02 ) 0.57 1.31E-04 ( 2.71E-05 ) 0.007 ( 5.14E-03 )

SPEA2 (MaxiMin) 100 7.05E-01 ( 5.03E-03 ) 0.26 9.55E-05 ( 4.68E-06 ) 0.000 ( 2.41E-04 )
DEMO 100 7.25E-01 ( 7.61E-03 ) 0.37 9.34E-05 ( 6.36E-06 ) 0.000 ( 1.47E-04 )

DEMO (MaxiMin) 100 7.07E-01 ( 4.79E-03 ) 0.27 9.43E-05 ( 5.95E-06 ) 0.000 ( 1.73E-04 )
ε-MOEA 100 8.31E-01 ( 7.20E-03 ) 0.98 7.79E-05 ( 4.35E-06 ) 0.020 ( 6.42E-04 )
NSGA-II 130 7.58E-01 ( 8.80E-03 ) 0.56 1.05E-04 ( 8.76E-06 ) 0.000 ( 2.11E-04 )

NSGA-II (MaxiMin) 130 7.23E-01 ( 2.87E-03 ) 0.36 9.47E-05 ( 6.16E-06 ) 0.000 ( 2.27E-04 )
SPEA2 130 7.70E-01 ( 1.27E-02 ) 0.63 1.14E-04 ( 8.96E-06 ) 0.005 ( 2.82E-03 )

SPEA2 (MaxiMin) 130 7.23E-01 ( 3.96E-03 ) 0.36 9.35E-05 ( 6.89E-06 ) 0.000 ( 2.18E-04 )
DEMO 130 7.45E-01 ( 7.08E-03 ) 0.49 8.42E-05 ( 6.36E-06 ) 0.000 ( 1.86E-04 )

DEMO (MaxiMin) 130 7.25E-01 ( 4.29E-03 ) 0.37 8.45E-05 ( 7.94E-06 ) 0.000 ( 1.82E-04 )
ε-MOEA 130 8.35E-01 ( 4.42E-03 ) 1.00 7.30E-05 ( 3.73E-06 ) 0.024 ( 3.71E-02 )

Table 4: Diversity and convergence metrics for problem ZDT3

Algorithm Pop Diversity ND Convergence Max. Spread
Size Mean (StdDev) Mean (StdDev) Mean (StdDev)

NSGA-II 66 3.49E-01 ( 4.19E-02 ) 0.69 4.43E-04 ( 1.83E-04 ) 0.002 ( 1.25E-03 )
NSGA-II (MaxiMin) 66 5.44E-02 ( 2.92E-02 ) 0.01 4.24E-04 ( 1.03E-04 ) 0.001 ( 1.32E-03 )

SPEA2 66 4.61E-01 ( 3.41E-01 ) 0.94 1.98E-02 ( 6.85E-02 ) 0.923 ( 3.19E+00 )
SPEA2 (MaxiMin) 66 5.07E-02 ( 1.82E-02 ) 0.00 4.22E-04 ( 7.64E-05 ) 0.001 ( 1.01E-03 )

DEMO 66 4.85E-01 ( 1.18E-01 ) 1.00 2.33E-02 ( 2.79E-02 ) 0.107 ( 1.09E-01 )
DEMO (MaxiMin) 66 1.76E-01 ( 1.39E-01 ) 0.29 1.28E-02 ( 1.57E-02 ) 0.062 ( 7.12E-02 )

ε-MOEA 66 3.56E-01 ( 1.21E-02 ) 0.70 3.44E-04 ( 1.44E-04 ) 0.074 ( 2.70E-03 )
NSGA-II 100 3.41E-01 ( 2.93E-02 ) 0.67 3.53E-04 ( 1.23E-04 ) 0.002 ( 1.44E-03 )

NSGA-II (MaxiMin) 100 3.05E-01 ( 8.41E-03 ) 0.59 3.34E-04 ( 8.34E-05 ) 0.001 ( 9.92E-04 )
SPEA2 100 3.89E-01 ( 2.50E-01 ) 0.78 6.13E-03 ( 2.70E-02 ) 0.417 ( 1.91E+00 )

SPEA2 (MaxiMin) 100 3.10E-01 ( 2.26E-02 ) 0.60 3.68E-04 ( 2.51E-04 ) 0.005 ( 2.05E-02 )
DEMO 100 3.68E-01 ( 5.20E-02 ) 0.73 1.46E-03 ( 3.76E-03 ) 0.008 ( 2.54E-02 )

DEMO (MaxiMin) 100 3.47E-01 ( 6.38E-02 ) 0.68 3.93E-03 ( 5.75E-03 ) 0.025 ( 3.89E-02 )
ε-MOEA 100 3.52E-01 ( 1.38E-02 ) 0.69 2.59E-04 ( 1.36E-04 ) 0.061 ( 8.38E-03 )
NSGA-II 130 3.34E-01 ( 2.26E-02 ) 0.65 3.41E-04 ( 1.15E-04 ) 0.002 ( 1.95E-03 )

NSGA-II (MaxiMin) 130 1.12E-01 ( 4.35E-02 ) 0.14 3.02E-04 ( 1.59E-04 ) 0.001 ( 1.69E-03 )
SPEA2 130 3.91E-01 ( 2.53E-01 ) 0.78 6.03E-03 ( 2.74E-02 ) 0.534 ( 2.52E+00 )

SPEA2 (MaxiMin) 130 1.08E-01 ( 5.59E-02 ) 0.13 2.71E-04 ( 4.29E-05 ) 0.002 ( 6.08E-03 )
DEMO 130 3.55E-01 ( 3.15E-02 ) 0.70 5.39E-04 ( 1.97E-03 ) 0.003 ( 1.52E-02 )

DEMO (MaxiMin) 130 1.22E-01 ( 3.70E-02 ) 0.16 5.27E-04 ( 1.94E-03 ) 0.003 ( 1.52E-02 )
ε-MOEA 130 3.52E-01 ( 1.10E-02 ) 0.69 2.54E-04 ( 8.79E-05 ) 0.053 ( 7.57E-03 )

Table 5: Diversity and convergence metrics for problem ZDT4
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Algorithm Pop Diversity ND Convergence Max. Spread
Size Mean (StdDev) Mean (StdDev) Mean (StdDev)

NSGA-II 66 6.28E-01 ( 5.56E-02 ) 0.74 2.25E-04 ( 2.42E-05 ) 0.119 ( 1.16E-04 )
NSGA-II (MaxiMin) 66 1.59E-01 ( 4.73E-03 ) 0.02 2.88E-04 ( 1.18E-05 ) 0.119 ( 1.52E-04 )

SPEA2 66 4.99E-01 ( 2.45E-01 ) 0.54 5.27E-03 ( 1.30E-02 ) 0.313 ( 5.31E-01 )
SPEA2 (MaxiMin) 66 1.58E-01 ( 3.65E-03 ) 0.01 2.86E-04 ( 1.44E-05 ) 0.119 ( 1.68E-04 )

DEMO 66 7.93E-01 ( 4.24E-02 ) 1.00 1.08E-04 ( 8.46E-06 ) 0.119 ( 6.39E-08 )
DEMO (MaxiMin) 66 1.49E-01 ( 2.95E-03 ) 0.00 9.92E-05 ( 4.75E-06 ) 0.119 ( 3.58E-07 )

ε-MOEA 66 2.75E-01 ( 9.33E-03 ) 0.20 3.02E-04 ( 1.23E-05 ) 0.127 ( 4.21E-03 )
NSGA-II 100 4.18E-01 ( 2.69E-02 ) 0.42 4.91E-04 ( 6.92E-05 ) 0.120 ( 3.73E-04 )

NSGA-II (MaxiMin) 100 3.81E-01 ( 9.08E-03 ) 0.36 5.53E-04 ( 7.80E-05 ) 0.120 ( 3.57E-04 )
SPEA2 100 5.80E-01 ( 2.84E-01 ) 0.67 5.29E-03 ( 8.91E-03 ) 0.397 ( 5.58E-01 )

SPEA2 (MaxiMin) 100 3.80E-01 ( 7.18E-03 ) 0.36 5.46E-04 ( 8.26E-05 ) 0.120 ( 3.31E-04 )
DEMO 100 7.92E-01 ( 4.61E-02 ) 1.00 8.76E-05 ( 5.01E-06 ) 0.119 ( 1.72E-07 )

DEMO (MaxiMin) 100 3.93E-01 ( 3.26E-03 ) 0.38 8.18E-05 ( 3.69E-06 ) 0.119 ( 9.63E-08 )
ε-MOEA 100 2.90E-01 ( 1.19E-02 ) 0.22 3.25E-04 ( 3.04E-05 ) 0.123 ( 7.42E-04 )
NSGA-II 130 3.99E-01 ( 2.27E-02 ) 0.39 9.36E-04 ( 1.00E-04 ) 0.121 ( 9.35E-04 )

NSGA-II (MaxiMin) 130 3.12E-01 ( 1.83E-02 ) 0.25 1.12E-03 ( 1.27E-04 ) 0.122 ( 7.92E-04 )
SPEA2 130 5.83E-01 ( 3.18E-01 ) 0.67 5.89E-03 ( 8.93E-03 ) 0.488 ( 7.41E-01 )

SPEA2 (MaxiMin) 130 3.05E-01 ( 1.90E-02 ) 0.24 1.06E-03 ( 1.08E-04 ) 0.122 ( 7.50E-04 )
DEMO 130 7.88E-01 ( 3.75E-02 ) 0.99 7.63E-05 ( 4.18E-06 ) 0.119 ( 8.55E-08 )

DEMO (MaxiMin) 130 1.60E-01 ( 9.62E-03 ) 0.02 7.36E-05 ( 2.30E-06 ) 0.119 ( 4.93E-07 )
ε-MOEA 130 3.00E-01 ( 1.30E-02 ) 0.23 3.67E-04 ( 3.07E-05 ) 0.121 ( 1.64E-03 )

Table 6: Diversity and convergence metrics for problem ZDT6

• Comments on ZDT3. The ZDT3 problem has a disconnected Pareto front, it is especially interesting for this
characteristic. As we can observe, there is no need of any tuning to use the MaxiMin, diversity is improved for
all cases in comparison to the original selection of each algorithm. Results shown in Table 4, and a sample view
of the Pareto fronts are shown in Figure 5.

• Comments on ZDT4. We can observe that behavior with or without MaxiMin is similar in convergence. As in
the other cases MaxiMin improves diversity. Results shown in Table 5, and and a sample view of the Pareto
fronts are shown in Figure 6.

• Comments to ZDT6. In the last problem of this set, MaxiMin improves diversity maintaining convergence.
Results shown in Table 6, and a sample view of the Pareto fronts are shown in Figure 7.
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Figure 3: Graphical comparison for problem ZDT1
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Figure 4: Graphical comparison for problem ZDT2
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Figure 6: Graphical comparison for problem ZDT4
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Figure 7: Graphical comparison for problem ZDT6
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Figure 8: Pareto fronts fromε-MOEA runs, for the ZDT test problems.
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DTLZ1

Decision space x ∈ [0,1]7
Objective functions f1(x) = 0.5(1+g(xM))x1x2

f2(x) = 0.5(1+g(xM))(1−x2)x1
f3(x) = 0.5(1+g(xM))(1−x1)
g(xM) = 100+(5+∑7

i=3(xi −0.5)2)−cos(20π(xi −0.5)))
Optimal solutions 0 ≤ x1,x∗2 ≤ 1 and x∗i = 0.5 f or i = 3, ...,7

DTLZ2

Decision space x ∈ [0,1]12

Objective functions f1(x) = (1+g(xM)) cos(x1π/2) cos(x2π/2)
f2(x) = (1+g(xM)) cos(x1π/2) sin(x2π/2)
f3(x) = (1+g(xM)) sin(x2π/2)
g(xM) = ∑12

i=3(xi −0.5)2

Optimal solutions 0 ≤ x1,x∗2 ≤ 1 and x∗i = 0.5 f or i = 3, ...,7

DTLZ4

Decision space y ∈ [0,1]12

Mapping xi = y1
i 00

Objective functions f1(x) = (1+g(xM)) cos(x1π/2) cos(x2π/2)
f2(x) = (1+g(xM)) cos(x1π/2) sin(x2π/2)
f3(x) = (1+g(xM)) sin(x2π/2)
g(xM) = ∑12

i=3(xi −0.5)2

DTLZ5

Decision space x ∈ [0,1]12

Objective functions f1(x) = (1+g(xM)) cos(θ1) cos(θ2)
f2(x) = (1+g(xM)) cos(θ1) sin(θ2)
f3(x) = (1+g(xM)) sin(θ2)
g(xM) = ∑12

i=3(xi −0.5)2

θ j = π
4(1+g(xM )) (1+2g(xM)x j ) f or j = 1,2

Table 7: The DTLZ test functions

6.2 DTLZ test problems

The DTLZ problems are a scalable set proposed by Deb et al. [12]. These problems can be built for any number
of variables and objective functions. Nonetheless, a three-objective version was solved by NSGA-II and SPEA2
algorithms, with and without Maximin selection. The DTLZ test functions are listed in Table 7, and diversity and
convergence metrics are shown in Table 8 to 11. The MaxiMin algorithm can be applied for any number of objective
functions without any change, and a similar behavior is expected, regardless of the number of objectives. For some
algorithms as NSGA-II and DEMO, it can be observed that its diversity mechanism has a poor performance, that
becomes worse when dimensionality of the objective space is increased. Due to convergence problems, DEMO results
are only shown for the first problem. Most of the algorithms have problems to converge in DTLZ3 problem; thus, in
this case comparison is not convenient.
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Algorithm Pop Diversity ND Convergence Max. Spread
Size Mean (StdDev) Mean (StdDev) Mean (StdDev)

NSGA-II 100 6.92E-01 ( 3.40E-01 ) 1.00 4.87E-02 ( 1.18E-01 ) 2.250 ( 6.64E+00 )
NSGA-II (MaxiMin) 100 1.69E-01 ( 1.72E-01 ) 0.18 9.45E-03 ( 2.09E-02 ) 0.196 ( 3.76E-01 )

SPEA2 100 2.13E-01 ( 6.35E-02 ) 0.25 7.57E-03 ( 2.06E-02 ) 0.245 ( 5.27E-01 )
SPEA2 (MaxiMin) 100 1.10E-01 ( 6.15E-02 ) 0.09 1.74E-03 ( 4.59E-03 ) 0.062 ( 2.14E-01 )

DEMO 100 4.42E-01 ( 4.54E-02 ) 0.61 4.96E-03 ( 1.76E-02 ) 0.067 ( 2.54E-01 )
DEMO (MaxiMin) 100 7.33E-02 ( 3.66E-02 ) 0.03 1.35E-02 ( 2.68E-02 ) 0.200 ( 4.07E-01 )

ε-MOEA 100 1.89E-01 ( 3.55E-02 ) 0.21 8.43E-04 ( 4.52E-04 ) 0.088 ( 1.26E-02 )
NSGA-II 136 6.30E-01 ( 2.30E-01 ) 0.90 3.97E-02 ( 7.04E-02 ) 1.710 ( 3.41E+00 )

NSGA-II (MaxiMin) 136 1.83E-01 ( 1.26E-01 ) 0.20 7.93E-03 ( 1.37E-02 ) 0.386 ( 6.34E-01 )
SPEA2 136 3.22E-01 ( 1.62E-01 ) 0.42 1.43E-02 ( 1.72E-02 ) 0.726 ( 7.87E-01 )

SPEA2 (MaxiMin) 136 2.65E-01 ( 3.96E-01 ) 0.33 5.03E-02 ( 1.52E-01 ) 3.060 ( 1.18E+01 )
DEMO 136 4.48E-01 ( 3.36E-02 ) 0.62 2.90E-04 ( 7.39E-06 ) 0.000 ( 5.75E-06 )

DEMO (MaxiMin) 136 5.18E-02 ( 7.91E-03 ) 0.00 3.01E-04 ( 6.94E-05 ) 0.000 ( 2.07E-03 )
ε-MOEA 136 1.81E-01 ( 2.22E-02 ) 0.20 6.77E-04 ( 2.44E-04 ) 0.087 ( 1.38E-02 )

Table 8: Diversity and convergence metrics for problem DTLZ1

Algorithm Pop Diversity ND Convergence Max. Spread
Size Mean (StdDev) Mean (StdDev) Mean (StdDev)

NSGA-II 100 5.26E-01 ( 4.99E-02 ) 1.00 2.49E-03 ( 4.49E-03 ) 0.050 ( 1.07E-01 )
NSGA-II (MaxiMin) 100 1.42E-01 ( 1.43E-02 ) 0.04 8.17E-04 ( 1.48E-04 ) 0.006 ( 7.46E-03 )

SPEA2 100 1.70E-01 ( 1.43E-02 ) 0.11 1.13E-03 ( 1.69E-04 ) 0.011 ( 9.70E-03 )
SPEA2 (MaxiMin) 100 1.46E-01 ( 1.72E-02 ) 0.05 7.89E-04 ( 1.43E-04 ) 0.006 ( 6.96E-03 )

ε-MOEA 100 2.57E-01 ( 1.23E-02 ) 0.33 9.76E-04 ( 5.44E-05 ) 0.014 ( 5.60E-03 )
NSGA-II 136 5.07E-01 ( 4.12E-02 ) 0.95 1.07E-03 ( 1.35E-04 ) 0.021 ( 1.11E-02 )

NSGA-II (MaxiMin) 136 1.25E-01 ( 1.39E-02 ) 0.00 6.43E-04 ( 1.06E-04 ) 0.006 ( 8.48E-03 )
SPEA2 136 1.63E-01 ( 1.47E-02 ) 0.09 9.36E-04 ( 8.50E-05 ) 0.009 ( 8.24E-03 )

SPEA2 (MaxiMin) 136 1.27E-01 ( 1.21E-02 ) 0.00 6.81E-04 ( 1.12E-04 ) 0.006 ( 7.17E-03 )
ε-MOEA 136 2.51E-01 ( 9.83E-03 ) 0.31 7.41E-04 ( 5.14E-05 ) 0.010 ( 7.27E-03 )

Table 9: Diversity and convergence metrics for problem DTLZ2
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Algorithm Pop Diversity ND Convergence Max. Spread
Size Mean (StdDev) Mean (StdDev) Mean (StdDev)

NSGA-II 100 5.12E-01 ( 7.28E-02 ) 1.00 1.25E-03 ( 3.01E-04 ) 0.054 ( 1.43E-01 )
NSGA-II (MaxiMin) 100 1.60E-01 ( 8.18E-02 ) 0.04 8.52E-04 ( 1.93E-04 ) 0.029 ( 1.04E-01 )

SPEA2 100 3.10E-01 ( 2.24E-01 ) 0.45 1.47E-03 ( 6.78E-04 ) 0.188 ( 2.60E-01 )
SPEA2 (MaxiMin) 100 1.62E-01 ( 8.61E-02 ) 0.05 8.19E-04 ( 1.62E-04 ) 0.029 ( 1.04E-01 )

ε-MOEA 100 4.57E-01 ( 1.94E-01 ) 0.85 1.57E-03 ( 1.64E-03 ) 0.335 ( 2.82E-01 )
NSGA-II 136 5.02E-01 ( 5.83E-02 ) 0.97 9.90E-04 ( 1.71E-04 ) 0.033 ( 1.03E-01 )

NSGA-II (MaxiMin) 136 1.45E-01 ( 9.10E-02 ) 0.00 7.25E-04 ( 1.29E-04 ) 0.029 ( 1.04E-01 )
SPEA2 136 2.07E-01 ( 1.47E-01 ) 0.17 1.38E-03 ( 3.90E-04 ) 0.083 ( 1.69E-01 )

SPEA2 (MaxiMin) 136 1.72E-01 ( 1.44E-01 ) 0.07 6.79E-04 ( 1.90E-04 ) 0.068 ( 1.73E-01 )
ε-MOEA 136 3.36E-01 ( 1.87E-01 ) 0.52 6.93E-04 ( 2.98E-04 ) 0.106 ( 2.15E-01 )

Table 10: Diversity and convergence metrics for problem DTLZ4

Algorithm Pop Diversity ND Convergence Max. Spread
Size Mean (StdDev) Mean (StdDev) Mean (StdDev)

NSGA-II 100 4.39E-01 ( 5.71E-02 ) 0.79 9.96E-04 ( 2.83E-03 ) 0.024 ( 7.87E-02 )
NSGA-II (MaxiMin) 100 2.33E-01 ( 2.74E-02 ) 0.24 1.77E-04 ( 7.57E-05 ) 0.001 ( 1.08E-03 )

SPEA2 100 2.77E-01 ( 2.88E-02 ) 0.35 2.34E-04 ( 7.06E-05 ) 0.007 ( 3.97E-03 )
SPEA2 (MaxiMin) 100 2.37E-01 ( 2.35E-02 ) 0.25 1.38E-04 ( 7.26E-05 ) 0.000 ( 1.13E-03 )

ε-MOEA 100 4.78E-01 ( 2.28E-02 ) 0.90 7.46E-05 ( 1.08E-05 ) 0.001 ( 7.63E-04 )
NSGA-II 136 4.27E-01 ( 4.96E-02 ) 0.76 2.02E-04 ( 9.83E-05 ) 0.004 ( 9.12E-03 )

NSGA-II (MaxiMin) 136 1.45E-01 ( 3.54E-02 ) 0.00 1.20E-04 ( 4.04E-05 ) 0.000 ( 8.77E-04 )
SPEA2 136 2.64E-01 ( 2.82E-02 ) 0.32 1.54E-04 ( 1.18E-04 ) 0.005 ( 1.00E-02 )

SPEA2 (MaxiMin) 136 1.51E-01 ( 2.57E-02 ) 0.02 1.24E-04 ( 4.44E-05 ) 0.001 ( 1.40E-03 )
ε-MOEA 136 5.17E-01 ( 2.44E-02 ) 1.00 5.69E-05 ( 4.91E-06 ) 0.001 ( 5.52E-04 )

Table 11: Diversity and convergence metrics for problem DTLZ5

• Comments to DTLZ1. For the DTLZ1 problem all the algorithms show good convergence and diversity values,
but note that the MaxiMin version of each algorithm improves the original. A view of the Pareto fronts is shown
in Figure 6.2.

• Comments to DTLZ2. For DTLZ2 problem the metrics give similar bahavior as for DTLZ1, i.e., MaxiMin
version is better. A view of the Pareto fronts is shown in Figure 6.2.

• Comments to DTLZ4. Algorithms with MaxiMin can achieve a good convergence as well as diversity. A view
of the Pareto fronts is shown in Figure 6.2.

• Comments to DTLZ5. Convergence metric reports the best values among all problems, and diversity is well
close to zero. Notice that MaxiMin outperformsε-MOEA. A view of the Pareto fronts is shown in Figure 6.2.
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Figure 9: Graphical comparison for problem DTLZ1.
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Figure 10: Graphical comparison for problemDTLZ2.
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Figure 11: Graphical comparison for problem DTLZ4.

19



 0
 0.2

 0.4
 0.6

 0.8
 1

 0
 0.2

 0.4
 0.6

 0.8
 1

 0

 0.2

 0.4

 0.6

 0.8

 1

f3

NSGA-II

f1

f2

f3

 0
 0.2

 0.4
 0.6

 0.8
 1

 0
 0.2

 0.4
 0.6

 0.8
 1

 0

 0.2

 0.4

 0.6

 0.8

 1

f3

SPEA2

f1

f2

f3

 0
 0.2

 0.4
 0.6

 0.8
 1

 0
 0.2

 0.4
 0.6

 0.8
 1

 0

 0.2

 0.4

 0.6

 0.8

 1

f3

NSGA-II with MaxiMin

f1

f2

f3

 0
 0.2

 0.4
 0.6

 0.8
 1

 0
 0.2

 0.4
 0.6

 0.8
 1

 0

 0.2

 0.4

 0.6

 0.8

 1

f3

SPEA2 with MaxiMin

f1

f2

f3

Figure 12: Graphical comparison for problem DTLZ5.
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Figure 13: Pareto fronts fromε-MOEA runs, for the DTLZ test problems.
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Figure 14: Relative comparison among algorithms with and without MaxiMin

6.3 General MaxiMin Performance

According to experiments developed, the MaxiMin selection substantially improves the search engines in SPEA2,
DEMO and NSGA-II. Figure 14 shows a relative comparison among algorithms with and without MaxiMin. To create
the graphic, the MaxiMin version of the algorithms are compared with the original versions. We took the means of the
performance metrics presented in Tables 2 to 11. Then, we compared the mean of the MaxiMin version against the
original, for the same population size. Counting the number of means in which the MaxiMin versions are better than
the original over the total number of sets of runs a percentage is calculated. The Figure 14 clearly shows that for all
cases the diversity is improved by the MaxiMin versions, and most of the cases convergence and maximum spread are
improved too.

Observe that for each problem there is a MaxiMin version which has a better diversity value thanε-MOEA.

7 Conclusions

A novel strategy to discriminate overcrowded points in the Pareto front is presented. The MaxiMin algorithm performs
as well or better than others for diversity, maintaining or even improving convergence. This algorithm, immune to the
different sizes of the search space on each dimension, has several advantages:

• It does not have scalability problems. This means that performance (spreading of solutions)

• It does not require parameters, as do other approaches such asε-MOEA, PAES, etc.

• It scales up without complications. For any size of functin space, MaxiMin performance is consistent.

• It has a low complexity. The MaxiMin algorithm does not require sorting, or distance computing among all
individuals, etc.

• It is independent of the evolutionary search engine.

• It has a stable behavior. Usually the MaxiMin algorithm performs similarly for the same parameters.
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• Knowledge about minimum and maximum function values are not needed.

According to the experiments developed, there are very good approaches such asε-MOEA to achieve diversity
in MOEAs. Although, it was designed to perform well in a variety of problems, for non-connected or non-typical
problems (e.g. ZDT3, DTLZ5) it cannot achieve a good performance. In problems such as DTLZ2, spacing of
solutions when usingε-MOEA depends on the curvature of the Pareto front, due to the inherent hyper-grid that is
built. Thus,ε-MOEA allows us to tackle only certain solutions or points in the objective space. Another disadvantage
of this approach is the tuning of theε vector.

The MaxiMin algorithm also has some disadvantages such as population size dependence, and that it does not
actually give information about which individual is better than another in a less crowding sense.
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